ML Augmented Prediction for Labor Exploitation Detection

Stanford Data Science ×

August 14, 2024

Our Team

Enkhjin Munkhbayar DSSG Fellow

Leon Reilly DSSG Fellow

Kyler Shu DSSG Fellow

Our Mentors

Dr. Benjamin Seiler **Technical Mentor**

Dr. Kim Babiarz **Technical Mentor**

Background

Modern Slavery. Brazil. Charcoal. Our Goal.

Modern Slavery

- **50 million** exploited annually.
- Victims **trapped** by threats and coercion.
- **Data gaps** hinder effective policy.
- Global efforts lack data-driven impact.

HTDL's Brazil Focus

Over 1 million

trapped in modern slavery.

Robust data from record-keeping and transparency laws.

Why Brazil?

Strong collaboration

 with Brazil's Federal Labor Prosecution Office.

HTDL's Charcoal Focus

Labor-Intensive Production Process \triangleright

Exploitation Risk \triangleright

- >
- **Detection Challenges** \triangleright
- Satellite Tracking \triangleright

Why Charcoal?

Environmental and Economic Factors

· · · Charcoal Site Detection Process

Satellite Imagery

Remote Detection Model (CHAR)

Human Post-Processing

Task Force Inspection

· · · Charcoal Site Detection Process

Remote Detection Model (CHAR)

What We Seek

What We Seek

High Resolution Image

Training Image

Charcoal Site Detection Process

Satellite Imagery

Remote Detection Model (CHAR)

ML Model with Geospatial Covariates

Task Force Inspection

Our Goal

Elevate the human post-processing.

Develop ML Models

Explore Geospatial Data

Expand Training Data

Feature Engineering

GeoPandas Pipeline. Distance. Density.

Charcoal Site Data

5278 Sites

Flagged by the CHAR model from satellite images of Maranhão. Threshold of 0.9.

478 True Sites

Manually labelled and confirmed as charcoal sites.

Month

Images from 7/23 to 3/24.

Geometry

Includes precise location of the flagged site.

Model Score Model score from CHAR is included.

Tiling Satellite imagery grouped by unique tile ID.

Roads

Charcoal needs to be transported to steel mills.

Model Intuition

Villages

Charcoal sites may want to be far away from villages to avoid detection.

Deforestation

Charcoal is made from cutting down trees.

Other Sites

Expect some clustering of charcoal sites.

Feature Construction

Data Source

EDA and thinking to determine relevant data which may have signal.

Appropriate Metric

Determine which metric to construct. Shortest distance to, feature count within a radius, within municipality, etc.

GeoPandas

Create pipeline to query database and construct features to be fed into the model.

Feature Construction

Data Source

EDA and thinking to determine relevant data which may have signal.

SmartLab: \triangleright

• Contains survey data of every municipality in Brazil. Includes data like literacy rate, poverty rate, number of workers rescued, and so on.

Geographic Features:

• Geometries (locations) of roads, lakes, towns, indigenous lands, deforestation permits.

MapBiomas Alerts: >

• Geometries of deforestation alerts that are updated every two weeks by the Brazilian government.

Feature Construction

Appropriate Metric

Determine which metric to construct. Shortest distance to, feature count within a radius, within municipality, etc.

 \triangleright It makes sense to ask how many lakes are within 10 km of a charcoal site and how close a charcoal site is since the number and distance of lakes may have a bearing on whether to setup a charcoal site or not.

GeoPandas

Create pipeline to query database and construct features to be fed into the model.

Initial Results

In general, data aligns with expectations. Watermass is proxying for other features

Initial Results

Discernment between FP and TP sites exists. Suggests there is signal here for the model to pick up on.

Distance to nearest watermass (km)

14 Distance Variables

Shortest straightline distance to feature

Full Feature Construction

3 Density Variables

Feature count within 10 km radius 38 Total

12 Landcover Categories

Forest plantation, savannah formation, etc.

9 Survey Variables

From SmartLab data on poverty, literacy rate, rescued workers, etc.

Machine Learning Model

Architectures. Analytics. Performance.

Implementation

Grouping and Stratification

Model Architectures

Hyperparameter Tuning and Result Analysis

Data Handling

Grouping

Group datapoints by location to prevent train/test knowledge leakage.

Stratification

Balance by label to ensure sufficient training points and consistent evaluation.

Splitting

1/6 Holdout set, remaining 5/6 broken into 5-fold cross validation.

Model Architectures

Tree-based models

Gradient Boosting, Random Forest

Transformer-based models TabPFN

Hyperparameter Tuning

Model Performance On validation set, at threshold 0.25.

F1 Score

Precision

Model Analytics 700 600 500 400 Count 300 700 200 100 600 0. 500 400 tung 25 300 20 200 15 Count 100 10 0 -0.4 0.6 1.0 0.2 0.8 0.0 proba 5 0 -0.0

Ground Truth

Feature Importance

Built-in Gradient Boost (top 10)

TreeSHAP

model score Distance to nearest rural settlements Char alerts within 10km Distance to nearest biomas alert Distance to nearest watermass Distance to nearest indigenous lands Other non Vegetated Areas Savanna Formation Sum of 32 other features

Cluster Analysis

Geospatial. Full Feature.

Geospatial Cluster Analysis

DBSCAN Clustering with Buffer Zones

- ➢ Total True Charcoal Sites: 86
- Unique Clusters Identified: 26
- Max Clustering Distance: 20 km
- Min Sites per Cluster: 2

Feature Cluster Analysis

Conclusion

Future Work. Acknowledgements.

Future Work

Image feature embeddings

Enrichen the information from the first stage of the model.

Improved time-series modeling

"Hotspot" feature, deforestation chronology

Feedback from fieldwork

Brazil FLPO task force deployment this August

Acknowledgements

Dr. Ben Seiler

Dr. Mike Baiocchi

Dr. Kim Babiarz, Jonas Junnior, and the HTDL Lab

Shilaan Alzahawi, Dr. Balasubramanian Narasimhan, Dr. Annie Lamar, and the whole DSSG team

